Energy dissipation and frequency shift of a damped dynamic force microscopy.

نویسنده

  • Shueei Muh Lin
چکیده

The closed-form solution of the transient response of damped dynamic force microscopy subjected to the nonlinear interatomic force is derived. The frequency shift and the decay rate of a V-typed probe can be determined easily and precisely by the proposed method. If the taper ratio is zero, a uniform cantilever is obtained. Moreover, the transient response of a non-uniform cantilever can be determined also in the same way. The complex Young's modulus is used to describe the viscoelastic material property. In the modulus, the loss factor is introduced. The relation between the Q-factor and the loss factor is discussed. Moreover, the relation between the energy dissipation and the frequency shift is revealed. Finally, the effects of several parameters on the Q-factor, the frequency shift and the decay rate are investigated. The proposed method can be easily applied to investigate the tapping mode of AFM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of the tip in non-contact atomic force microscopy dissipation images of ionic surfaces.

In this paper we use simulations to investigate the role of the tip in nc-AFM measurements of dissipated energy. Using a virtual AFM we simulate the experiment focusing on the atomic scale energy dissipation on an NaCl(100) flat surface. The non-conservative interaction was treated with the theory of dynamic response and all the calculations were carried out using an atomistic model; several se...

متن کامل

A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface...

متن کامل

Distance dependence of force and dissipation in non-contact atomic force microscopy on Cu(100) and Al(111)

The dynamic characteristics of a tip oscillating in the nc-AFM mode in close vicinity to a Cu(100)-surface are investigated by means of phase variation experiments in the constant amplitude mode. The change of the quality factor upon approaching the surface deduced from both frequency shift and excitation versus phase curves yield to consistent values. The optimum phase is found to be independe...

متن کامل

Design and performance analysis of a seismic grade resonance nano accelerometer

In this paper, design and performance analysis of a resonance nanosensor for earthquake low frequency geoacoustic waves detection is proposed. The model comprises of a proof mass suspended to the substrate, and a nanobeam attached to the intersection of the proof mass to the substrate. The nanobeam could be cosidered as a clamped-clamped nanoresonator actuated electrostartically. The induced ac...

متن کامل

General theory of microscopic dynamical response in surface probe microscopy: from imaging to dissipation.

We present a general theory of atomistic dynamical response in surface probe microscopy when two solid surfaces move with respect to each other in close proximity, when atomic instabilities are likely to occur. These instabilities result in a bistable potential energy surface, leading to temperature dependent atomic scale topography and damping (dissipation) images. The theory is illustrated on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultramicroscopy

دوره 106 6  شماره 

صفحات  -

تاریخ انتشار 2006